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ABSTRACT

Some existence and sufficient conditions of current interest in the

field of optimal-control theory are discussed. This report briefly describes

the role of existence and sufficiency conditions in the field of optimal

control. The existence theorems are discussed for general nonlinear systems.

However, the sufficient conditions pertain to "nearly" linear systems with

integral convox costs. Moreover, a brief discussion of linear systems with

multiple-cost functions is presented.
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I.	 INTRODUCTION

The problem of automatic control has been discussed for many years, and
'	 k

various techniques and results have been developed to handle control problems.
IA
,R	 y

Within the last two decades, such problems have become of much greater interest

due to the development of new control devices and the feasibility of implementation

via aigital computers. Although we shall discuss the optimal-control problem

from a general point of view, where the cost functions, the constraints, and
4

the target sets are quite general, some special examples will also be presented.

Some of the typical problems of optimal-control problems are:

(1) Minimization of the fuel consumption of a given vehicle from a

given initial state to a target state.

(2) Minimization of the time to transfer a given state to a final state.

(3) Minimization of energy.

Modern control theory frequently utilizes very complex systems, and,

therefore, it is often impossible to determine an c,ptimal control experimentally

without a complete theoretical investigation. In the optimal-control theory,

the physical system is often characterized by a state variable differential

equation model; it may not, in general, represent the intrinsic physical

reality that it purports to describe. In these situations, the optimal solu-

tion may not indeed exist, although one may intuitively feel that the solution

should exist. If the optimal control does not exist, it can be implied that

there is something degenerate about the physical system (Ref. 1). Thus, the

existence of optimal control conveys a very important physical significance.

In this report, some general existence conditions for optimal control are

discussed (see Refs. 2 through 7)• If the solution to the optional-control

problem exists, then it will satisfy certain necessary conditions. Loosely

speaking, solutions satisfying these boundary conditions are called extremal.

JPL Technical Memorandum 33-764 	 1
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However, there is no guarantee that any extremal is an optimal solution. 	 For

the general nonlinear system, there is no such guarantee nor sufficient condition

of optimality. In recent years, the sufficiency conditions have virtually been

ii
ignored. However, some sufficient conditions of optimality with ordinary

differential equation constraints have been studied by Lee (Ref. 5), Mangasarian

(Ref. 8), Neustdat (Ref. 9), Lee and Markus (Ref. 10), and others (Refs. 11

through 15). That is, some conditions are presented that extract the optimal-

control solution from the set of extremal controls.

In this report, we shall first discuss these sufficient conditions which

guarantee an optimal solution, and also some features of multiple-cost functions

(Ref. 16) as well. Next, we shall discuss the existence of optimal control.

Examples are provided to illustrate the important features of each part (see

Refs. 17 through 20).

II. SUFFICIENCY CONDITIONS

The system to be studied here, unless otherwise specified, is represented

by Eq. (1) and the cost functional to be minimized by Eq. (2):

A = A(t)x + B(t)u
	

( 1 )

where A(t) and B(t) are continuous n x n and n n m matrices, respectively, for

each t in a given finite interval [to,T] and x(t 0 ) = x0 . x is the system

state, an n-vector, and u is the control, an m-vector, and the cost is

where

C(u) = g(x(T)) + C O (u)	 (2)

fT
CO W =	 [ f0(t,x) + h0(t,u)]dt

t 0

and g(x), f0 (t,x), and h0 (t,u) are all real continuous functions in all their

arguments. Also, assume that f 0 (t,x),h 0 (t,u) are non-negative and convex

2	 JPL Technical Memorandum 33-764
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functions for each t.

Denote U(to,T) as the set of all measurable functions u(t) on [to,T] such

that u(t) e a for all t, n is a set which is in Rm . We write u e n, whenever

u is a member of U(to,T). u e a is called admissible control. Also, ]:t

K(T,xo) denote the attainable set of the system given by Eq. (1). Th p ^ is,

given the initial state, K(T,xo) is the set of all points in R n to which x 0 can

be steered to via an admissible control.

Let
t

xo (t) _	 [fo(t,x) + h 0 (t,u)]dt	 (3)
t0

and K(T,xo) be the attainable set corresponding to the (n + 1) dimensional

state equation given by

k(t) = A(t)x + B(t)u,	 x(to) = x0

k o (t)	 fo (t,x) + h o (t,u), x o (t 0 ) = 0

Let us denote the element of system (4) by z, where z(t) = (xo(t),x(t)).

Thus, z(0) = (O,xo). In what follows, we assume the system K(T,xo) has nonempty

interior in Rn+1. The following definitions are also needed.

Definition 1. An admissible control U(t) on [to,T], which steers (0,x0)

A
to a boundary point of K(T,xo), is called an extremal control, and the corres-

ponding response x(t) is called an extremal response.

Definition 2. A control v e n is called optimal if C(v) s C(u) for all

v e a. For Lemma 1 and Theorem 1, which follow, assume n is such that u e n,

whenever 1u(t)1p 5 aho(t,u(t)), with p>1 and a>0.

Lemma 1

K(T,xo) corresponding to the system given by Eq. (4) is closed and convex.

A
If in addition n C Rm is compact, then K(T,xo) is compact and convex (Ref. 1).

Remark 1. It is a standard result to show that an optimal-control u e n

corresponding to the cost C O (u) exists. If g(x) is convex in R n , then an

JPL Technical Memorandum 33-764
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optimal control corresponding to C(u) also exists (see Refs. 1, 5, and 7)•

Lemma 2

A necessary and sufficient condition for the control u*(t) with the

response x*(t) and the cost C 0 (u) to be extremal is that there exist a vector

n(t) = (no,n(t)) satisfying:

afo

n( t ) _ -no— (t,x*) - n(t)A(t)

ax

no=0, no<0

and

noho(t,u*) + n(t)B(t)u* = max {noh o (t,u) + n(t)B(t)uF
ue0 l	 11

almost everywhere (a.e.).

Remark 2, It can be shown that an optimal-control u*(t)eU(t,T O ) with

response x*(t) is extremal; however, u*(t) may not be unique. If h o (t,u) is

strictly convex in u for each t, then u*(t) will be unique. In fact, in such a

case, any two extremal controls steering (O,xo) to the same boundary point of

K(T,xo) must be equal almost everywhere. The uniqueness of an optimal control

requires very stringent conditions. So it is natural to introduce another cost

function C 1 (u) and then choose a control which minimizes C 1 (u) among the ones

that minimize COW.

Theorem 1

Consider the system given by Eq. (1) with the corresponding cost

T
C(u) = g(x(T)) + ( [f o (t,x) + ho(t,u))dt

J to

Assume that g(x) c C 1 and is convex in Rn.

(i) There exists a nontrivial solution x*(t), n*(t) of the system

z* = A(t)x* + B(t)u*

JPL Technical Memorandum 33-764
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ax

such that x *(t 0 ) = x0 , n(T) _ -grad g(x*(T)), and u*(t) is defined by

-h0 (t,u*) + nB(t)u* = max [-h0 (t,u) + nB(t)ul
uER

and is an optimal control with the corresponding optimal response x*(t).

(ii) If h 0 (t,u) is strictly convex for each t, then u*(t) is a unique
e

optimal control.

A geometrinal proof, outlined below in three steps, is presented.

(1) Consider the family of hypersurfaces S c :xO + g(x) = e in Rn+1
	

In

Refs. 1 and 7, it is shown that there exists a unique hypersurface

S  among this family such that S  is tangent to K(T,xo), and m

is the optimal cost (see Fig. 1).

A
(2) Let s E K(T,xo)nSm and n s be the tangent hyperplane passing through

s. Let n*(T) = ( - t,n*(T)) be normal to x s at s. Also, let u*(t) be

the extremal control steering (0,x 0 ) to s = ^*(t) = (x* 0 , x*(t)), and

let (-t,n*(t)) be such that n*(t) is the soluta,n of

af0

n(t) _ -- (t,x *) - n(t)A(t)
ax

n*(T) = -grad g(x*(T))

By Lemma 2, u*(t) satisfies the maximal principle with the adjoint

response n*(t). Thus, u*(t) is optimal since m is the optimal cost.

A
(3) If h 0 (t,u) is as in (ii), then s c K(T,xo)n Sm is the only point, and

it is unique. Hence, from Remark 1, u*(t) must be unique.

Example 1. Consider the system given by Eq. (1) with the cost

C(u) = x"(T)Gx(T) + x0(T)

JPL Technical Memorandum 33-764
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such that G is a constant symmetric positive semidefinite matrix,

z0 = x'(s)W(s)x(s) + u'(s)P(s)u(s)

where W(s) and P(s) are both symmetric and continuous matrices for s c [tO,T],

and the prime of a matrix denotes its transpose. Let us further assume that

W(s) is positive semidefinite and P(s) positive definite for all s. Let u e P

whenever

/T

J
u'(s)P(s)u(s)ds < m

t0

Since this problem satisfies the conditions of Theorem 1, and the con-

ditions that h O (t,u) = u'(t)P(t)u(t) is strictly convex and g(x) = x'Gx

is convex and of class C 1 are satisfied, then from Remarks 1 and 2 there

exists a unique optimal control u*(t) = P-1(t)B'(t)n'(t) with a unique response

x*(t) determined by

k(t) = A(t)x(t) + B(t)P-1(t)B'(t)n'(t), x(t 0 ) = x0

af0
n(t) = -n(t)A(t) + -- (t,x(t)) = -n(t)A(t) + 2x'(t)W(t), n(T) = -2x'(T)G

ax

where u*(t) steers z*(0) = (0,x 0 ) to the unique point at which the surface

A
Sm ;xo + x'Gx = m is tangent to K(T,xo) (see Fig. 1). In what follows, a

sufficient condition for o ptimality is presented for a system described by a

set of equations different from (1).

Consider the system given by

ko (t) = f0 (t,x) + k 0 (t,u), x0 (t 0 ) = (O,x O ),f0 ,k 0 a R1
(5)

k(t) = A(t)x + k(t,u), x(t 0 ) = x0

where tte coefficients f0 , 6100 /3x, k, k0 , and A are continuous in all arguments,

and f0 (t,x) is convex in x for each t c [t O ,T]. The admissible controls u(t)

are bounded on [to,T], i.e., u(t) belongs to a nonempty restraint set n C Rm

6	 JPL Technical Memorandum 33-764
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Theorem 2

Part I. Consider the system Riven by Eq. (5) and a closed target set G in

Rn with the cost CO W = xO (T) and an admissible control u(t). Assume the

existence of u*(t) with the response n*(t) = (x*O(t),x*lc)), satisfying the

maximal principle	

r

	

-kO (t,u*) + n(t)k(t,u*) a= e ' max{-ko(t,u) + n(t)k(t,u)^	 (6)
u(i l 	 11111

where n(t) is a nontrivial solution of

af0

n(t) _ — ( t , x* ) - n(t)A(t)
ax

and n(T) is the inward normal to the boundary eG of G. Then, u*(t) is optimal.

Part II. Assume

(a) G = R°.

(b) The cost C(u) = g(x(T)) + x O (T), where g is differentiable and

convex in Rn.

(c) The admissible control u* ( R satisfies the maximal principle by

Eq. (6) with n(T) = -grad (x*(T)).

Conclusion. u*(t) is optimal.

The proof of the theorem relies heavily on two facts:

(i) (afolax) (t,x)(w-x) 5 f 0 (t,x) = f0 (t,w), i.e., the convexity of

fO (t,x) in x, for each fixed t.

(ii) If u* ( 0 such that the response x*(t) = (x*O(t),x(t)) initiates from

(O,x O ), then n(T)x* a n(T)w, where n(t) is as in Lemma 2, and w is in

the set of attainability of the system given by Eq. (5) in Rn+1

(see Ref.	 7)•

Example 2. Consider the controllable system k(t) = Ax(t) + Bu(t) in Rn

with cost

CO(u) = 
10 u'(s)P(s)u(s)ds

JPL Technical Memorandum 33-764 	 7



the target G = (x:y(x) = x 1 2 + x 22 + ... + xn2 -1 <- 01, x(0) = x 0 , and P,

n are as in Example 1.

From Remark 1, assuming that the set of attainability intersects the

c^
target set, then there exists an optimal-control u*(t) which is unique, since

hO (t,u) = u'(t)P(t)u(t) is strictly convex in u for each fixed t e [to,T], and

by the maximal principle u*(t) = P-1(t)B'(t)n*(t)', where n*(t) is the unique

solution of

a(t) = -n(t)A

with

n(T) = -grad Y(x*(T)) = -2(x 1 *(T), ..., xn*(T))

and x*(t) is the solution of

a(t) = Ax + BP-1(t)B'n*(t)

Note: 8G = (x:y(x) = 0) and Y ;^ 0 on aG. Hence n(T) = -grad y(x*(T)) is the

inward normal to eG at x*(T).

III. MULTIPLE-COST FUNCTIONALS

Define the: following system:

k(t)	 = A(t)x + B(t)u, x(t0)	 = x0

*0 (t) =	 f0 (t,x) + h0 (t,u), x0(0)	 =	 0,	 X0 (t) e	 R 1 (7)

k1 (t) =	 f 1 (t,x) +	 h 1 (t,u), x1(0)	 =	 O,x i (t)	 a	 R1

Assume that f 0 (t,x), f 1 (t,x)	 C 1 , h 1 (t,u) a C 0 are convex non-negative

functions for each x and u, and G is the target set.

Let the admissibility be as in Theorem 2 with a further restriction on R,

namely, R is compact and convex. Let K(T,x O ) denote the set of attainability

of the system given by Eq. (7). Our objective is to find u* e a with response

x*(t) so that

(i) x*(T) a G.

8	 JPL Technical Memorandum 33-764
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(ii) CO (u*) 5 C O W) for u c ft, with the corresponding response x(t) in G

at t = T.

(iii) C 1 (u*) <_ C 1 (u) for all u c n such that the correspondin g response i8
,

in G at t = T and C O (u) = COW*).

Definition 3. The saturation set K s , corresponding to set K(T,xo), ir, the

set of all points (y O ,y) e Rq+1 such that there exists (x 0 ,x) c K(T,x O ) with

x 0 < .y0 and x = v. Similarly the saturation set Ks , corresponding to set

R(T,x O ), is the set of all points (y0 y 1 y) E 1jn+2 such that there exists

a point (x 0 x 1 ,x) K(T,xo) with x = y, x 0 s y 0 , and x
1 = y1,

A
The following observations are made: I(T,xo) and K(T,xo) are convex and

compact. It is not hard to show that K(T,xo) and Ks are the orthogonal projections

of K(T,xr,, '. .u: Its on (x0 x)-space in Rn+1 and K(T,xo) is the orthogonal

A	 A
projection of K(T,xo), K s , and K(P,xo) on the x-space Rn.

Theorem 3.

Assume that there exists an admissible control u c n which steers the

response of the system given by Eq. (1) to G at t = T. Then there exist=

a nontrivial solution x*(`.), n*(t), q*(t) of the system of equations

k(t) = A(t)x + B(t)u*, x(to) = xO

afO
9(t) = -q(t)A(t) - no -- (t,x)

ax

af 0	af0
n(t) = -n(t)A(t) - n o — ( t , x ) - 9 1 — (t,x)

ax	 ax

with either

(i) x(T) e G, no < 0 , n 1 < 0, q(T) = n(T) = 0, or

(ii) x(T) c boundary of G, no -< 0, n 1 <_ 0, q(T) = n(T),where n(1)

is the inward normal to G at x(T), and

noh0 (t,u*) + q(t)B(t)u* = max (noh 0 (t,u) + c(t)B(t)u]
uEP

JPL Technical Memorandum 33-764	 4



no h o (t,u*) + n 1 h 1 (t,u) + n(t)u*B(t) = max (n o h o (t,u) + n l h 1 (t,u) + n(t)B(t)u)
uEn

If no and n 1 are non-zero, then u*(t) is an optimal control with responses

x*(t), n*(t), and q*(t).

The proof of Theorem 3 is based on Lemmas 3 and 4.

Lemma

A necessary and sufficient condition for the control u* E 0 to steer

(0,0,x 0 ) with the corresponding response x(t) = (x 0 (t), x 1 (t), x(t)) to the

common boundary of K(T,x,) (1 Ks at t = T is that there exist a nontrivial

response n(t) = (n0,n1,n(t)) of the equation

1fo	aft

6(t) = -n(t)A(t) - no --- (t,x) - n 1 — (t,x)
ax	 ax

with n0 , n 1 both non-negative constants, such that

n oho (t,u*) + n 1 h 1 (t,u*) + n(t)B(t)u* = max {n oho (t,u) + 9 1 h 1 (t,u) + n(t)B(t)u)
uEn

The proof of Lemma 3 is similar to Lemma 2 (also see Refs. 1 and 16).

Remark 3. In case h 0 (t,u) is strictly convex in u for each t, th-n

Theorem 4 is reduced to a single cost function Co(u) of the system given

by Eq.	 (1).

Lemma 4

If K(T,x.) n G is nonempty, then the existence of an optimal control is

guaranteed, i.e., if there exists an admissible control u in Q steering x(t) to

x(T) ( G, then there exists an optimal control. In Remark 1, the existence is

always guaranteed since K(T,xo) fl 0 is always nonempty.

The following example shows the applicability of Lemma 4 with a single

co^i. ° mcl*ion.

1;	 JPL Technical Memorandum 33-764



Example 3. Consider the linear system:

')= 0

1x11
+ 	u

 0 -1	 x 2	1

with the cost

t

C O W) =	 dt = t < m

•	 0

Let R = (u: Jul <_ 11 C R 1 , the initial set be a fixed point
,

X1(0

and G = (x:x 1 = O,Ix2 l ` 1), then it can be shown that K(T,x O ) fl G -. p, im-

plying that such an initial condition in R 2 can be transferre6 to the set G

with an optimal control.

IV. EXISTENCE OF AN OPTIMAL CONTROL

So far the axistence of an optimal control for linear systems with convex

integral cost has not required many stringent conditions; for nonlinear systems

this is no longer true. In linear systems we have a lot of nice properties,

e.g., a control function u(t) satisfies the maximal principle if and only if it

is extremal. This fact is no longer true for nonlinear systems. In Ref. 1, a

few examples to this effect are supplied.

In order to discuss an existence theorem for a moving target with a

general cost, we shall impose the following* strin gent conditions:

(1) The nonlinear process k(t) = f(x(t), u(t),t), where f c C1(Rn+m+1)

(2) Initial and target sets G O (t) and G 1 (t), respectively, are compact

nonempty sets and continuously varying in R n for all t c (TO,T).

(3) A control restraint R is a nonempty compact set continuously varying

in R m , for (x,t) c R n x (TO,T)•

JPL Technical Memorandum 33-764



"	 (4) Inequality state constraints h i (x) s 0 0 .... hr (x) 5 0, where

hi (x), 1 = 1,2, ..., r, is real and continuous on Rn•

(5) A nonempty family F consists of measurable functions u(t) on various
is

4

time intervals (t O ,t t ) C ( T O ,T) with response x(t) steering x(to) e

G(to) to x(t 1 ) a G(t 1 ), and u(t) a n, with condition (4) satisfied.

Theorem 4

Let u e F, with the corresponding cost of the system given by

C(u) = g(x(tO))	 t 1 fG (x(t),u(t),t)dt +	 max	 Y('x(t))
4t O	 W to,t1)

where f O E C 1 , g and Y e CO and are all real functions. Along with conditions

(1)-(5) above, we impose the following additional assumptions:

(a) There exists a uniform bound jx(t)j <- b on t e (to,t 1 ) for all

responses to controls u e F.

(b) The velocity set v(x,t) = {fO(x(t),u(t),t),f(x(t),u(t),t):u a a)

is convex in Rn+1 for each fixed (x,t).

Then there exists an optimal control u*(t) on [t o*,t 1 *] C [ T o ,T] in F mini-

mizing C(u).

The proof relies very heavily on establishing the fact that the set of

attainability corresponding to the system is compact and varies continuously in

Rn , for to [T O ,T]. It can be shown (Ref. 10) thu F is weakly compact, implying

the existence of a control u*(t) and an admissible sequence n k (t) with corresponding

decreasing costs, such that

lim C(un ) = C(u*)
n—

It is important to notice that if the initial condition to* in [TO,T]

is fixed, and F (the corresponding admissible class on various intervals

[to *,T 1 ] ?.;. [t O*,T])is nonempty, and the rest of the conditions in Theorem
i

12	 JPL Technical Memorandum 33-764
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ix

4 are satisfied, then there would exist an optimal control u*(t) on [to *,t1*]

in F minimizing C(u) among all u e F.

Remarks

(i) If f0 = g = 0, then we shall have a minimax problem.

(ii) In Ref. 1 and Theorem 4, the convexity of the velocity set plays a

crucial role, but in Ref. 9 several examples are given where the

velocity set is not convex and the optimal control exists.

Now let us give a few examples with respect to Theorem 4.

Example 4. Consider the system:

x 1 = 1

*2 = -x1u

in R2 , m = 1, x(0) = (-1,0) with a cost

1trt1	 1	 1	 dx

C0(u) = J
	 dt =J0 1 + x 22	1 1 + y2

an admissible family F with restraint set R = (u:juj _< 11 and t e [0,21, and

X(t i ) = (1,0).

For every admissible u e a, and [to,T] = [0,2], there exists : response

x 1 (t) = t - 1 and x 2 (t), and if we let Ju(t)l = 1, x 2 (x 1 ) = x 2 (t(x 1 )), then

we will obtain

-0 - x12)	 1 _ x12

< x2 (x 1 ) <
2	 2

on x E[ -1,11. Since the hypotheses of Theorem 4 are satisfied, then there

exists an optimal control (in fact, there are two optimal controls: u(t) = 1,

and u(t) = -1).

Example 5. Let z 1 = sin 2nu, z 2 = cos ?nu, z 3 = -1 in R 3 I

with the cost

JPL Technical Memorandum 33-764



CO (u) = ti (x 1 2 + x22)dt
10

a as in Example 4, and x(0) = (0,0,1), x(t 1 ) = (0,0,0), 0 5 t <- t1 <- 2, be,
c

	

	 7

respectively, in G O , G1.

Solution. The velocity set is not convex. If t 1 = 1, we can construct a

sequence of controls u k (t) such that

sin 21uk (t) = sin 2nkt
for k = 1,2, ...	 i

cos 2nuk (t) = cos 2akt

where these piecewise continuous controls are easily made (see Refs. 1 and 7).

For each admissible u k a n, the corresponding response is

1 - cos 21kt	 sin 2nkt

	

x 1 k (t) =	 r x 2k (t) =	 , x 3k (t) = 1 - t
2nk	 2irk

with x 1 k (1) = 0 1 x2 k (1) = 0, x
3

 
k (1) = 0,

1
1 - cos 2nkt	 1

CO (	u k ) =	 dt =	 and lim C
O 
(uk ) = 0

 0	 2n2k2	 2Tr2k2	 kam 

But there is no optima]. control on (0,1), since if u* is optimal, then

f1
C(u * ) = 

J

( x 1 * 2 + x 2 * 2 )dt = 0
0

would imply that 01 (t) = x* 2 (t) = 0, which implies that sin gnu*(t)

cos 21tu*(t) = 0 for almost all t. Hence, an optimal control does not

exist.

Example 6. We give an example where condition (2) is not satisfied.

Consider k = u, where u is continuous on (0,2) and x ( t o) = 0. Define G1(t)

such that

2, if 0 :i t :^ 1

C 1 (t) _
1, if 1 <_ t <_ 2

14	 JPL Technical Memorandum 33-764
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where the control restraint is the region -1 5 u <_ 1, with the cost

C(u) =	
t 
1 (x(t) - t)2dt

Ito

Let

k

	

[o f k + 1

uk(t)=on 

k + 1	 k

then

k + 1
C(uk) = 3

3k

It is obvious G(u k ) a 0 when k approaches infinity. If v is the optimal

c otrol on [t 0*,t 1 *], then we must have C(v) = 0; therefore, x(t)	 t. We

can imply that t 0 = 0. Hence, no optimal control exists.

Some of the conditions of Theorem 4 can be relaxed. For example, Neustadt

(Ref. 9) and Warga (Ref. 19) studied the existence of optimal controls in the

absence of some convexity conditions. Also Gamkrelidze (Ref. 20) showed that

if the velocity set given by condition (b) of Theorem 4 was not convex, then

there would exist a sequence of controls whose limit trajectory converges to a

certain curve satisfying the given boundary conditions with its corresponding

cost function approaching a lower bound. This limit is called the optimal

sliding regime. Thus, in Theorem 4 in the absence of convexity of condition

(b), if it is possible to transfer x 0EG0 (t) to x i eG 1 (t), then there would exist

a minimizing sequence of controls u 1 , u 2 , ..., uk , and the trajectories x1(t),

x 2 (t), ..., xk (t), ... such that

lim C(uk ) = M
k•m

where M is the infimum of the cost functions transferring x 0 to x 1 . Moreover,

the sequence xk (t) converges uniformly to some limit trajectory x(t).
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V. CONCLUSIONS

Some existence and sufficient conditions of optimality of single- and

multiple-cost functions have been discussed. It has been established that the
.i 

existence and sufficiency conditions cannot be taken for granted. It has also

been shown that some stringent conditions on various parameters of both linear

and nonlinear systems are needed in order to extract the optimal-control solu-

tions from the set of extremals. Finally, examples conveying the effectiveness
i

of the conditions were constructed.
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